
MATTHEW DELINE: CAMPFIRE TALES – AUGMENTING MODERN ORAL TRADITIONS THROUGH PERFORMANCE AND PROCEDURAL GENERATION 1

Campfire Tales: Augmenting Modern Oral
Traditions Through Performance and

Procedural Generation
Matthew Deline, MA Independent Games and Playable Experience Design, Goldsmiths

Abstract—Performance is one of the oldest, if not the oldest, forms of human creative expression. It was used to develop
language, social structures, remember historical events, as a tool for survival, and gave us a voice as storytellers. Compared to
many millennia of development in practice and form for these traditions, modern artificial intelligence algorithms that allow
computers to create stories of their own are still in their infancy. Yet their journey is shockingly similar. What would happen if we
were to combine the two?

 In this paper, we discuss the transformation of ancient oral traditions to modern western fireside stories, examine several
examples of procedural storytelling in interactive media and games, and show how they informed the development of Campfire
Tales, an immersive generative narrative experience shown at the Playful Experiences exhibition at Goldsmiths, University of
London in September 2018.

—————————— u ——————————

1 INTRODUCTION
1.1 What is Campfire Tales?

HEN I was growing up, I learned the alphabet by
playing a storytelling game with my dad we called

the “Alphabet Game.” He would tell me a story at bedtime
where he would periodically pause because the main char-
acter encountered a “blank,” where the blank would start
with the next letter of the alphabet. This led to lots of sto-
ries with alligators or apples going on boating adventures
with cobras. I adapted this storytelling game later in life
with friends on camping trips, where you would go
around in a circle and each time a new blank occurs, the
next person would then become the storyteller. It’s the kind
of experience that in either case is impossible without some
kind of improvisation, and dialogue between audience and
orator. It’s also incredibly difficult to simulate this type of
relationship using computer software. And by taking cues
from storytelling games like the Alphabet Game that use a
human agent as a moderator between the ruleset and
shared performance, we can address some of that diffi-
culty.
 As a former actor and sometimes writer turned game
developer, I find the intersection between art and technol-
ogy particularly compelling when they meet in perfor-
mance. So, the goal for Campfire Tales was to be able to rep-
licate my childhood memories for others while using all of
the various skills that I have learned to make something
unique. The end result is an installation based experience
that combines the most important parts of interactive me-
dia through performance and group interaction, and the
symbolic relationship between procedural generation and
storytelling through oral traditions.

 Campfire Tales is a storytelling game where players inter-
act with a generated narrative around a digital campfire,
where they are periodically given the opportunity to intro-
duce new words into the story that are incorporated into
the telling. When a story has finished, a banner image of
their complete tale is saved so their favorites can be shared
with their friends, or kept for rereading aloud. In the ver-
sion to be displayed at Playful Experiences, the game will be
performed, where the story is read aloud by a human mod-
erator who interacts with the audience to make group de-
cisions on added elements, and the game system manipu-
lates a theatrical campfire that will change color and react
based on player interaction. It is a symbiotic digital recrea-
tion of an oral tradition.

2 ORAL TRADITIONS, CAMPFIRE TALES AND
STORYTELLING IN GAMES

2.1 What is an Oral Tradition?
Oral traditions, defined as both the process and the prod-
ucts of “verbal messages which are reported statements
from the past beyond the present generation” are some of
the earliest forms of human performance. The process is
the repeated spoken telling of an original message over
time until it has been lost, and the product is the new mes-
sage produced by each new repetition [1]. This method of
storytelling predates the concept of the stage, and has been
used by numerous cultures, nations and civilizations as a
way to transmit knowledge throughout human history.
Oral traditions themselves are a form of ritual, where there
is importance placed not only upon the tales themselves,
but to the reverence placed upon the places and ways in
which they were told [2].
 Modern campfire stories, told at firesides at campsites

W

————————————————
• Matthew Deline is a member of the 2018 graduate class of the MA Inde-

pendent Games and Playable Experience Design at Goldsmiths, University
of London. E-mail: deline.matt@gmail.com

2 MATTHEW DELINE: CAMPFIRE TALES – AUGMENTING MODERN ORAL TRADITIONS THROUGH PERFORMANCE AND PROCEDURAL GENERATION

around America during summer camps, scout events, and
countless individual camping trips every year are their
own form of oral tradition. Like the warnings of magical
danger seen in the stories from other modern oral tradi-
tions elsewhere in the world, they allow us to pass on
warnings and cautionary tales in the form of urban legends
[3]. They allow us to spread information organically
through pre-existing social constructs, and share vital in-
formation in an interesting and entertaining manner.

2.2 What Makes a Good Campfire Story?
After reviewing dozens of campfire stories published
online and in book form, speaking with former scout lead-
ers, and drawing upon my own experiences from summer
camps as a child, I’ve reached a framework for what I con-
sider to be a good campfire story [4], [5], [6].
 They must have a proclaimed truth, a spooky setting, a
twist, and the ability to change to fit the audience. They can
have a moral, a warning, new knowledge, or mythical
characters. Most of these assertions that I made before writ-
ing the stories ended up being confirmed through player
feedback during the development of the game as well (See
Appendix A).

2.3 Example: The Evolution of Stories and
Campfire Americana in Where the Water Tastes
Like Wine

In Where the Water Tastes Like Wine, players have made an
unfortunate bet with the Dire Wolf and are forced to travel
across the United States of America collecting stories as
payment to free their soul [7]. Players collect stories by in-
teracting with points of interest on the map that are indi-
cated with a special prompt, and are added to their inven-
tory to be used later. These collected stories can change
over time as they are re-told in roadside homes, cities, and
campfires, and players often have the ability to affect how
they change when they are given a choice to say they are
true or not. For example, a story about a strange woman
that you encounter in a town can change and grow to be-
come a story about a woman who was actually a ghost!
These stories fit certain moods in the game, and are used
to fulfill requests in special conversations around a camp-
fire with other fellow lost souls found throughout the game
world. By matching the right stories, like a funny story for
someone who wants to laugh, the player reveals the true
nature of these special characters, freeing them from their

falsehoods and in turn helping the player free themselves
from their own curse.
 While Where the Water Tastes Like Wine doesn’t generate
text, as all of the potential variations are pre-written, and
the only procedural generation that the game has is in the
distribution of the stories across the landscape, it’s still an
incredibly interesting take on the evolution of stories over
time, and is an excellent example of the model of oral tra-
ditions in games.

2.4 Example: Interactive Storytelling through Dice
in Rory’s Story Cubes

Figure 2: Rolling the dice to create a story.

Rory’s Story Cubes is a great example of an interactive nar-
rative with audience participation that uses images on die
faces to represent the individual segments of the game’s
possibility space [8]. In the game, players are encouraged
to roll a certain number of dice, and to improvise a story
based on the images seen on the die faces. In the Epic Sto-
ries variation of the rules, nine cubes are rolled and used
by the first player to create the opening chapter of a new
story.
 Using the cubes in the image above, we could tell a story
about Rob the Alien who is flying on an airplane from the
moon to go to the theater. When he arrives, he discovers
that the entrance to the door is locked, and his monstrous
shadow has taken the key! In each subsequent turn, other
players switch from audience member to storyteller, and
roll the dice to create a new chapter of their own. The last
player is tasked with bringing all the stories together to a
satisfying conclusion, perhaps one where Rob has become
best friends with his shadow and they now both travel the
stars as a comedic duo inspired by the show that they were
locked out of in the first chapter.

3 PROCEDURAL CONTENT GENERATION (PCG)
3.1 What is PCG?
 For Campfire Tales to present this type of interactive per-
formance that incorporates audience participation by us-
ing software, it needs to be able to improvise or create new
content throughout the experience. This could be like gen-
erating the stories from the cube faces as we did with Rory’s
Story Cubes, or by creating the images that are used as

Figure 1: Telling stories at a campfire with another lost soul.

MATTHEW DELINE: CAMPFIRE TALES – AUGMENTING MODERN ORAL TRADITIONS THROUGH PERFORMANCE AND PROCEDURAL GENERATION 3

prompts for the players. We can do this digitally through
Procedural Content Generation (PCG), which is “the algorith-
mic creation of game content with limited or indirect user
input, [where] computer software can create game content
on its own, or together with one or many human players
or designers” [9]. Content that is created can be anything
produced by the software, from enemy statistics, levels,
and location names to unique audio and imagery. For
Campfire Tales, content that is created could be written
pieces of story to be read by a moderator, and color choices
for environmental lighting and effects.
 There are six established methods that can be used to
create PCG: Distribution, Parametric, Tile-based, Gram-
mars, Constraint-Solvers, and Agents and Simulations
[10].

3.2 Distribution
Distributive methods are used when you have a large
number of objects that you would like to place around an
environment algorithmically. Examples of this can be the
selective placement of specific types of Pokémon and the
likelihood that they might appear in Pokémon Go, or the lo-
cation of the stories and storytellers in Where the Water
Tastes Like Wine [7], [10], [11].

3.3 Parametric
Parametric methods involve the manipulation of specific
parameters of predefined objects. In a game like No Man’s
Sky, this could affect the characteristics of certain types of
foliage, landscapes, or environment geometry. They can
also be seen in music-based games that generate effects
based on audio parameters that are manipulated by the
player [10], [12].

3.4 Grammars
Grammars are generators that use recursive algorithms to
expand predefined text based on a series of rules to create
new and interesting combinations. It evokes the cut-up
method used by Burroughs, and although this method
uses text in its construction, the output does not necessarily
need to be in words [13]. Several examples output SVG im-
ages, or ASCII art to great effect [10].

3.5 Constraint-Solvers
Constraint solving methods generate solutions from large
sets of possibilities. Pathfinding, for example when you
click on a destination in a strategy game like StarCraft and
your units must find the best way to navigate around ob-
stacles to reach it, is a form of constraint solving [14]. Pro-
cedural Generation can utilize these methods by generat-
ing all of the possibilities from an initial set, and selecting
the best possible outcome based on a set of constraints.
They can be used to create incredible variety in content, but
also require a significant amount of computational power
that increases exponentially with complexity [10].

3.6 Agents and Simulations
These are fascinating tools that come closest to replicating
naturally occurring behavior. Genetic Algorithms, fa-
mously demonstrated in John Conway’s Game of Life, ex-
trapolate accurate evolutionary patterns from simulations

produced from a defined initial state [15]. More recently,
Dwarf Fortress, an indie management simulation game
about dwarves building a fortress uses simulated agency
in the dwarves themselves to create truly emergent behav-
ior in fascinating ways [10], [16].

3.7 What are the Difficulties of Using PCG?
These methods are powerful, and have the ability to pro-
duce incredibly high numbers of possible variations, but
they have their limitations. An issue that they all share is
the considerable problem of creating uniqueness. Kate
Compton describes this as the “10,000 bowls of oatmeal
problem”, where you can generate a mathematically sig-
nificant number of bowls with individual oats in different
locations or orientations that all appear to the viewer as a
bowl of oatmeal [10]. In this case, using generative tech-
niques doesn’t result in any meaningful output that justi-
fies their use. The real problem lies in creating perceptual
uniqueness, or “the difference between being an actor being
a face in a crowd scene and a character that is memorable”
[10].
 I like to think of it as similar to the old adage that if you
put a million monkeys in a room with typewriters, and
they could write for eternity, eventually they would create
Shakespeare’s Hamlet. Procedural Generation is signifi-
cantly more structured, as computers aren’t randomly typ-
ing characters until they eventually arrive at the expected
result, but the problem is the same. How many plays did
those million monkeys write that were nonsensical, or
even worse, boring?
 Returning to our Rory’s Story Cube example, it would be
much easier to write a program that generated the story
prompts as images than to write a program that generates
stories or meaning from the prompts themselves.

3.8 Example: The Difficulties of Developing with
PCG in No Man’s Sky

No current conversation about the challenges of develop-
ing procedural content would be complete without dis-
cussing Hello Games’ No Man’s Sky [12]. It’s a game about
experiencing the infinite possibilities of space through ex-
ploration, and is a marvelous technological achievement
by utilizing several of the previously discussed methods
successfully. The universe is expanded from an initial seed,
and through a series of parametric, distributive, and simu-
lative algorithms that are constrained by a set of universal

Figure 3 A procedurally generated alien on an unknown planet

4 MATTHEW DELINE: CAMPFIRE TALES – AUGMENTING MODERN ORAL TRADITIONS THROUGH PERFORMANCE AND PROCEDURAL GENERATION

rules to allow players to explore many of the generated gal-
axy’s “18,446,744,073,709,551,616 unique planets” [17].
 However, that focus on the sheer number of available
possibilities did not demonstrate the uniqueness of each
possible generation, and the overwhelming response from
critics and players during its original launch indicated that
the game was too repetitive and didn’t deliver on what
people expected, that every planet would be wholly
unique. Much of this problem lies in public perception of
what procedural generation is capable of, and that the po-
tential variety of content is of greater value than the mo-
ment to moment experience in game.

4 PROCEDURAL STORYTELLING
4.1 How PCG Can be Used to Create Narratives
Hello Games has, worked tirelessly to address this over the
two years since release. The addition of improved visuals,
tailored variation in locations and tasks, multiplayer, and
a narrative arc that ties the experience together by giving
players a story to follow have largely addressed many mis-
givings from the original version. Introducing authorial
control by producing a specific narrative from these gener-
ated elements is particularly effective because we as hu-
mans enjoy piecing together threads of stories to make
them our own.
 These are the stories we create where if we hadn’t gotten
off the train at a specific time, we never would have
bumped into someone who gave us our next job, or intro-
duced us to our future partner. In the case of No Man’s Sky
they might be tracked to specific encounters on certain
planets that led to a mystery solved elsewhere, and that
journey is entirely our own. And that is what makes this
kind of linear building block storytelling so powerful, as
it’s quintessentially human. Therefore, providing a space
for people to create their own stories through procedurally
generated content was a key goal for Campfire Tales.
 Doctor Chris Martens defines procedural narrative gen-
eration in her 2017 GDC talk with Rogelio Cardinal-Rivera
as “any automatic process that creates a narrative over
time, where that narrative is not determined before the
process begins.” [18]. As discussed in Procedural Narrative
Generation, the accepted process for a simulation-centric
approach requires an initial state with which to begin the
story, a set of interaction rules, and a story generator. This
method would allow designers to set up a rich world that
could be observed by the player, and could produce story
through the interaction of different elements from an initial
state. For example, a game that has a squirrel that loves to
find nuts in trees has just moved into an area with trees full
of squirrel-eating monsters.
Alternatively, a plot-centric approach could be used to en-
courage player interaction with the world as well as
greater authorship from the designer. This approach also
requires an initial state and a set of interaction rules, but
adds an interactive narrative that is produced using both a
story generator and a story mediator to allow the player to
proceed through a series of “nodes” or story “beats” that
occur in response to player actions [18].

4.2 Example: Procedural Narrative Generation in
Reigns: Her Majesty

Figures 4 & 5 Shuffling the deck and making decisions.

Reigns: Her Majesty is an excellent example of a game
which utilizes these elements to drive a narrative for-
ward [19]. In the game, players take the role of a queen
ruling her kingdom by making small binary decisions
on cards that appear each time the deck is shuffled. A
player might choose to placate the church by not wear-
ing the color red or decide whether or not to invest in a
foolish endeavor to seek out a new world. These ac-
tions affect the levels of the relationships with the
church, people, military, and coin, and when any of the
levels are too high (or low) the player is killed and a
new ruler is born to replace them (thus shuffling the
deck).
 While a story could be told about the individual
lives of each ruler and the decisions they made that led
to their untimely deaths, Reigns: Her Majesty does
have an overarching narrative that is told through a se-
ries of beats. By utilizing a distributive method of PCG
by adding weighted values to each card to ensure that
certain cards appear when needed to move the con-
nected narrative in the direction intended by the de-
signers. This includes encountering specific characters
once a certain number of rulers have died, as well as
giving subtle instructions that help the player solve
puzzles hidden throughout the game’s world. For ex-
ample, at one point the queen is given perfume through
a coronation ceremony that the player must perform
properly. This is an important item that is kept by all
subsequent generations, and the encounter is weighted
so that it occurs early on in the game, and then is
changed such that it won’t happen again once the
player has the perfume.

5 EXHIBITING PCG
5.1 Using PCG Outside the Game
Because Campfire Tales is intended to be experienced in a
performative space, I needed to look beyond games that
used PCG as pure content creation towards games that
used said content to evoke specific responses from their
players in the real world. Here are some examples of games
that use procedural content generation to encourage play-
ers to act within or manipulate the spaces around them.

MATTHEW DELINE: CAMPFIRE TALES – AUGMENTING MODERN ORAL TRADITIONS THROUGH PERFORMANCE AND PROCEDURAL GENERATION 5

5.2 Experiencing Parametric PCG in Exhibition with
PANORAMICAL

Figures 6 & 7 Visual output from play at Now Play This!

PANORAMICAL is a game that allows players to gen-
erate striking visual landscapes through audio manipu-
lation [20]. By adjusting various parameters in the
soundscape, players are given the chance to create and
modify the on-screen visuals in real time in ways that
map accordingly to their actions. In the home version,
players can save screenshots of their unique land-
scapes, and can share them by connecting the applica-
tion to their personal Twitter account.
 PANORAMICAL has also been shown at exhibitions
like Now Play This! in London, where players are able
to control the landscape with others in person using a
MIDI controller with a series of dials [21]. In this way,
the experience becomes a form of collaborative perfor-
mance as players connect to create landscapes together
through quick improvised decisions and by controlling
multiple parameters simultaneously to achieve the de-
sired result.

5.3 Creating an Immersive Experience with Pixel
Fireplace

Figure 8 Pixel Fireplace on display with 8-bit decor

Like PANORAMICAL, Pixel Fireplace is a game that
benefits from the place and environment in which it is
being played [22]. In it, players are tasked with keep-
ing a pixelated fireplace ablaze by typing in the things
that they need, like “log” or “match” to add logs or to
start the fire. It’s a relatively simple and relaxing expe-
rience when played on a computer at home, that is
transformed when introduced to other surroundings

that complement it. Some users have built their own
fireplaces [23] to encase the game and give it addi-
tional meaning, whereas others have used old monitors
and keyboards to evoke the era that the pixelated art
hearkens back to [24]. In either case, they are digital
reproductions of their analog originals, much in the
same way I hoped to add a physical representation of a
campfire to fundamentally change the space surround-
ing it.

6 CONNECTING THE DOTS
6.1 Why it is Important to Examine the Link

Between Oral Tradition, Interactivity, and
Procedural Generation

Written records of oral traditions are themselves a form of
reproduction that raises questions of their own authentic-
ity. Do they accurately represent the source material, and
are they themselves changed by the new medium in which
they exist?
 When Walter Benjamin wrote in his 1936 paper, The Work
of Art in the Age of Mechanical Reproduction that “technical
reproduction can put the copy of the original into situa-
tions which would be out of reach for the original itself,”
he was advocating that there are unique qualities inherent
in the reproduction of existing works either “in the form of
a photograph or a phonograph record” that don’t exist in
their source materials [25]. Whereas his examples describ-
ing the ability for camera lenses to highlight features pre-
sent that might be invisible to the naked eye and others are
firmly rooted in technology that has been markedly
changed over the past century, the sentiment is the same.
In an age where technology is no longer just capable of re-
producing art, but also creating it as well we need to reeval-
uate our assumptions.
 When we consider Campfire Tales as an experiment in
technically reproducing an art form, rather than an indi-
vidual piece, things become much more interesting. By
having a computer act as both the orator and mediator
while stories are told, they are also recorded, and though
they may change with repeated tellings, a record of each
can be kept. This is in direct contrast with the ephemeral
nature of oral traditions throughout human history as their
original messages are lost in the telling [1].

7 DEVELOPMENT PROCESS - RESEARCH
7.1 Introduction
I set out to develop Campfire Tales by focusing on three ma-
jor components of the experience: a central program that
utilizes procedurally generated content to tell stories with
audience interaction, optional room-scale environmental
effects driven by the central program to facilitate new types
of generative expressions, and introducing performers to
direct the player experience in a public space. To reach as
wide an audience as possible, I planned to release Campfire
Tales on the web so that people could interact with, save,
and share their own stories while being encouraged to act

6 MATTHEW DELINE: CAMPFIRE TALES – AUGMENTING MODERN ORAL TRADITIONS THROUGH PERFORMANCE AND PROCEDURAL GENERATION

them out live with their friends in a similar way to the ver-
sion being publicly exhibited. Through repeated play, we
create our own digital oral traditions as players, perform-
ers, and storytellers.

7.1 Why Procedural Generation?
Because the player interaction that I want to provide gen-
erally consists of a single word during transitions between
story beats, and that kind of input can be replicated in code
by saving player text input as a variable, I need a way to
tell stories that include the possibility for improvisation as
a result of that user interaction in order for it to feel mean-
ingful. To do so, I would need to find the right tool that
would allow me to generate text that could exist as a part
of a larger narrative, respond to user interaction in a mean-
ingful way, and allow me to use the content generated to
drive a microcontroller or other external electronic hard-
ware component.

7.2 Improv

Figure 9 Screenshot containing descriptions and options for new
worlds

Improv is a “model-backed generative text grammar tool
for JavaScript” by Bruno Dias that “can generate random,
procedurally generated text recursively” [26]. It was used
to create the details for the randomly generated elements
(like descriptions for planets, characters, pathways, and
events) in his 2017 game Voyageur [27]. Improv works by
creating JavaScript grammar objects from a possibility
space with a deeply nested structure consisting of phrases
and objects that can be tagged or filtered. A recursive func-
tion will read through this structure (which contains a set
of terminal and non-terminal values) to return a generated
text string that can used in the game.
 What sets Improv apart from other solutions is the ability
to create a model, or “object that holds data about the text,”
through the reincorporation of tags that can be filtered to
ensure more predictable or authored generation. In his
PROCJAM tutorial, Bruno provides an example that
would allow developers to generate types of ships that are
named specifically because they are either military or civil-
ian [28].

7.3 Rant
From the Rant website: “Rant is a free, all-purpose proce-
dural text generation language developed for .NET. It has
been refined over several years of development to include
a dizzying array of features designed to handle everything
from the most rudimentary of string generation tasks to

dynamic game dialogue generation, code templating, au-
tomatic formatting, poetry, and much more” [29].
 At first glance, Rant appears to have quite a lot of the
functionality for text generation that I’m looking for, as
well as documentation specifically for writers in estab-
lished projects. At the time of this writing, I had issues in-
tegrating Rant into the latest version of Unity, and the .NET
platform doesn’t have the same kind of flexibility with ex-
ternal components that I’m looking for.

7.4 Tracery

From the Tracery website: “Tracery is a super-simple tool
and language to generate text, by GalaxyKate. It's been
used by middle school students, humanities professors, in-
die game developers, professional bot makers, and lots of
regular people, too. Give it a try today!” [30]
 Tracery, like Improv, uses a recursive function to generate
text from an authored set of possibilities. While it lacks na-
tive support for data modeling and filtering, it is extremely
well documented and has been used in a number of pro-
jects that served as an inspiration for this game. It has also
been ported to other languages (such as ruby and python)
and there is even an integration into Twine!

7.5 RitaJS
From the RitaJS website: “Designed to support the creation
of new works of computational literature, the RiTa† library
provides tools for artists and writers working with natural
language in programmable media. The library is designed
to be simple while still enabling a range of powerful fea-
tures, from grammar and Markov-based generation to text-
mining, to feature-analysis (part-of-speech, phonemes,
stresses, etc.). All RiTa functions are heuristic and do not
require training data, thus making the core library quite
compact. RiTa can also be integrated with its own user-cus-
tomisable lexicon, or with the WordNet database. RiTa is
implemented in both Java and JavaScript, is free/libre and
open-source, and runs in a number of popular program-
ming environments including Android, Processing, Node,
and p5.js.” [31]
 At first glance, RitaJS appears to have all the functional-
ity that I need to get things up and running, with the added
bonus of having feature analysis to allow me to parse and

Figure 10 The web editor at tracery.io for rapidly prototyping
new grammars

MATTHEW DELINE: CAMPFIRE TALES – AUGMENTING MODERN ORAL TRADITIONS THROUGH PERFORMANCE AND PROCEDURAL GENERATION 7

modify generated text based on English grammar struc-
tures. I used RitaJS during my research to create a basic
Mad Libs Generator that replaces specific particles of
speech with words selected from its built-in lexicon.

7.6 Deciding on Which Platforms to Use
Ultimately, I settled on using Tracery as the library for
grammar generation based on the simplified nature of its
grammar structure. Whereas Improv has the ability to filter
text so that I would be less likely to create impossible sce-
narios, the fact that objects within its grammar generation
require tagging meant that it would be a nightmare for us-
ers to interact with the program. I didn’t want people to
have to type more than one thing per interaction, and it
would be especially disruptive to live performances if peo-
ple had to wait while someone typed in “animal” and “ex-
tinct” every time that they wanted to enter the word “di-
nosaur.” Tracery was powerful enough for my purposes,
and allowed me to use a JSON data structure to create and
save modified grammars as people played.
 I began working on Campfire Tales using JavaScript, Trac-
ery, Processing, RitaJS, and NodeJS so that I could extend
and update the project as needed during development
with additional packages for functionality. This environ-
ment allows for deployment to the web to reach a greater
potential audience than I likely could using Unity (which
meant that Rant was unsuitable). Additionally, I could use
Processing for visual effects and for serial communication
to drive an external electronic component (like an Arduino
for example) and RitaJS to parse text intelligently if I
wanted to implement changes to already generated stories
over time (like replacing key words with synonyms from
the built-in lexicon to create a sense of evolutionary
growth).

8 PROTOTYPING
8.1 Twitter Bot @CampfireTale
As I’m fairly new to JavaScript development, I decided to
make a Twitter Bot to both learn how to build a project us-
ing NodeJS and interact with an external API as well as
find a place to test generative text in tweet-sized chunks
and user interactions. I followed the excellent video tuto-
rial by Daniel Shiffman of “The Coding Train” to set up
basic tweet interactions while the program is running [32].
To do so, I had to apply for a Twitter development account.
For now, @CampfireTale only has a few basic test posts that
included running a generated image, and an automatic re-
sponse [33]. Going forward, I plan to use the account with
the Tracery based Twitter Bot generator “Cheap Bots, Done
Quick!” to quickly iterate my grammar design before at-
tempting to integrate the Tracery library directly into my
existing code [34]. This way, I can continue to iterate with-
out having to spend valuable development time imple-
menting my own solution in code that doesn’t necessarily
fit into the core product.

8.2 Processing, Tracery, and Node Prototype with
User Interaction

My first completed technical prototype started off as an ex-
ercise in getting Improv functionality working with P5js,
where I could output the text generated by Improv to the
screen using Processing. I started by following the example
in the Improv Tutorial to generate text to a terminal win-
dow, and then began to write a sample program that gen-
erated a variable from an Improv object in a Javascript pro-
gram [28]. I was able to get it running using a local simple
HTTP server in python to test results, but it became really
inefficient to set up every time that I wanted to make
changes and see the results in the browser console.
 By using the node package “budō” I was able to package
all the local files and serve them locally for testing, and
should include functionality for packaging them up for de-
ployment in a live environment [35]. I used Processing to
display text to the screen, and to add a text input box for
players. For usability, I didn’t want to have more than one
point of entry on the screen at any given time. This is when
I realized that Improv may not be the right tool for the job,
given the need for tagging objects that are added to the
grammar’s structure.
 I then decided to test with the node package for Tracery
(tracery-grammar), which requires including jQuery as
well in order to function [36]. Here, I was able to push in-
putted values to the array of values for characters in the
story, thus increasing the possibility space for potential
characters with each new entry. Each time the page is re-
freshed, the short story is regenerated from all of the values
contained within the grammar.
 It was a very basic interaction that demonstrated the
functionality that I was hoping would exist at the core of
the experience. However, I still have some major problems
to solve in future iterations. I can use the performer to filter
entry at the exhibition, but there is no easy way to filter
language (though this may be a good use for implementing
RitaJS), and I’m not certain that I should restrict the lan-
guage for any personal copy of the game. I also need to find
a way to connect the generated grammars in such a way
that I can create a narrative, and track inputted variables
for the course of an individual story.

8.3 Web Hosting with GitHub Pages
My eventual goal for Campfire Tales is to have it widely
available on the web. Once I had completed my initial tech-
nical prototype, I needed a way to publish it for people to
access it. My first test was to create a sketch in processing
that generated text on a curve over a static image and de-
ployed the sketch to GitHub and published it as a GitHub
page [37]. The sketch was visible, but had issues displaying
across a wide variety of devices. I collected a screenshot of
the sketch, and adjusted it to deploy a static teaser website
at campfiretales.info, where the final version of the game
would be released and take the place of the screenshot in
the canvas.

8.4 Tuya Smart Light Integration
My original intention was to use Processing to send data
over a serial port to an Arduino or other microcontroller

8 MATTHEW DELINE: CAMPFIRE TALES – AUGMENTING MODERN ORAL TRADITIONS THROUGH PERFORMANCE AND PROCEDURAL GENERATION

for environmental lighting or other effects. While I still
may use both for mechanical interactions, I decided to ex-
plore smart products for environmental lighting. This was
both to learn something new, and as a forward-thinking
move, as it could be kept and implemented into future it-
erations to allow users with smart light bulbs to experience
some of the designed lighting effects from the exhibition
version of Campfire Tales.
 To keep costs down, my first test was performed using a
generic Tuya compatible smart light. One of the major ad-
vantages was the availability of a node package for con-
trolling Tuya devices locally [38]. Getting the API to func-
tion properly within my main program was significantly
more difficult. Once I retrieved specific values by decoding
HTTPS traffic for a local key, local IP address and device
ID for my test bulb, I did manage to get the test program
to turn the light on and off when a key was pressed. Un-
fortunately, there appears to be no documentation for writ-
ing color values to the bulb (while there is a dataset that
appears to contain values, they refer to a state that is locked
behind developer access to the API, which at the time of
this writing I haven’t received).
 Color changing appears to be possible by setting up an
open source controller called “Homebridge,” but it seems
to make less sense to continue developing for a platform
that much less people would have access to, and requires
a significant amount of user setup that would significantly
reduce my ability to share these features with others in the
future. Additionally, there is a likely constraint that I won’t
be able to access external internet from the venue that this
will be installed in, so using a platform that requires access
to an external source for setup and control isn’t suitable. I
still plan to use colored lighting for the room, and more
specifically for the centerpiece campfire that I would like
the program to control.

8.5 Fire Effect Prototype
The original inspiration for this effect was a YouTube video
by the Daniels Wood Land Show detailing how to make an
"Insane Fake Fire Special Effect" using water vapor created
by a sonic ionizer, halogen lights, a Tupperware container,
and an old paint can [39]. Because I'll be setting Campfire
Tales up in an indoor environment with limited ventilation,
it's critical that I make something that is both safe and not
actually fire.
 I need to build something similar to the effect shown in
the previous video and scale it up to become a centerpiece
for the exhibition display. To do so, my first prototype in-
cludes an ultrasonic mist maker, a plastic shoe box, a plas-
tic bin that I cut holes into, and two portable fans. The mist
maker is essentially a piezo vibrating at a very specific fre-
quency that causes the water to split into microscopic
droplets that form a mist.
 Initial tests with the mist show that it works well at gen-
erating a large volume of airborne particles, but they tend
to sit in a layer about 2 to 3 inches above the water level.
To introduce movement, I added the two portable fans for
testing, and held the light above the lip of the bin. The ef-
fect is close, but will require a significant amount of addi-
tional development to get working right. The plan is to find

a way to "chamber" the mist so that it could be blown (po-
tentially from multiple sources) into an opening that will
be covered by burnt wood to give the impression of a
campfire. I'll be adding cade and birch tar essential oils to
the mixture to give the impression of a smoky, burning
wood smell, and can build a stone circle to hide the func-
tioning electronics and protect them from wayward visi-
tors. Lastly, I'll be able to integrate one of the smart light
solutions that I'm working on for environmental lighting
to give the campfire an otherworldly flavor with unnatural
colors.

9 ITERATING PROTOTYPES BASED ON FEEDBACK
9.1 Research Methodology
Campfire Tales was built on a foundation of iterative design,
and therefore required a significant amount of player feed-
back to inform and validate design choices and the pro-
ject’s effectiveness in completing research goals. This was
done with several rounds of feedback during its develop-
ment using a mixed-method approach to gather infor-
mation from peers, friends and family, professionals, and
through a small set of public tests before release.
 Qualitative feedback was gathered from my peers in the
form of interviews and recorded responses during our
weekly development and degree show planning meetings
over the summer. Once development reached a playable
stage, a google form was created that is linked to the com-
pletion of the game that allows testers to input feedback in
the form of short answer survey questions and metrics
based on a Likert scale to determine their response to var-
ious core features in the game (See Appendix A for ques-
tions and results).

9.2 Feedback and Iteration
The first round of peer feedback on my original prototype
raised significant concerns about what it was that made
Campfire Tales special. In its earliest form, the user interac-
tion doesn’t extend beyond an individual page. And while
I had managed to implement my own version of a model
using JSON, my classmates were genuinely concerned that
I wouldn’t be able to deliver a compelling experience with
a series of disconnected paragraphs. They were, however,
excited by the possibility of generating special effects with
the results of these generated sections.
 At this point I realized that I really needed to double
down on the development of the actual story generation
itself, and to determine how to make the experience itself
enjoyable. I started by researching aspects of oral traditions
in performance, interactive dramaturgies, design for pro-
cedural narratives, and reading hundreds of campfire sto-
ries to learn what makes them work. I came across a fun-
damental structure for building these narratives as a series
of beats that connect nodes in a possibility space.
 My writing process was to create a set of possible events
on index cards, and to map out how a player could get
from start to finish while still allowing for the entry of their
own characters. I would write short paragraphs with
blanks (for generative text additions like adjectives) and
special notes for saved variables that the player will have

MATTHEW DELINE: CAMPFIRE TALES – AUGMENTING MODERN ORAL TRADITIONS THROUGH PERFORMANCE AND PROCEDURAL GENERATION 9

or should have named, and planned to use these when de-
signing Tracery “grammars” in future iterations of the
game.
 I then diagrammed the entirety of how I imagined the
user experience would be, to make sure that I had a clearer
idea of all of the various game states and features that I
would need to implement during development.

9.3 Game Flow Diagram

My original vision for the entirety of the game works like
this: When a player first starts the game, they would see a
title screen indicating them to click to start the game (as
well as introducing clicking as a valid interaction). They
would then see a secondary title screen with three buttons
to start a new story, load a saved story, or reach an options
menu.
 If the player chose to go to the options menu they could
find a set of instructions, load a saved world model that
included things that had been added by other players, and
see a list of game credits (that for now includes myself and
the creator of the public domain stock background image
that I am using for the game).
 If the player chose to start a new story, they would be
given a series of screens with no more text than you would
see on a teleprompter on each (so they could easily be read
by a performer). Each screen would either give the option
to click to continue or to enter some text that could be
added to the game world and reincorporated into the story.
When the story ends, the player is then given the option to
save the story to replay it later or to restart.
 If the player chose to load a saved story, either created
themselves or someone else playing the game, the experi-
ence is similar to that of a new story except that players
would have the option to add new elements or keep them
the way that they were. This would allow players to keep
the same structure as a favorite story, such as a sequence of
events that they really enjoyed, but change certain ele-
ments to create a slightly different version that changes
with the telling. This is much like the ritual action and
gradual change of stories that I found occurred during my
research on storytelling in oral traditions.
 With this vision in mind, I set out to develop my second
functional prototype of the game.

9.4 Saving Variables into Existing Grammars

Figure 12 Grammar Manipulation Prototype

As mentioned previously, Tracery uses a recursive function
to expand a data structure called a grammar to generate
text. Generally, this allows the programmer to loop
through text and save an individual result from multiple
possibilities to generate different outputs each time the
function is run using the same grammar as a source. This
is done by creating a series of rules within the grammar for
Tracery to follow. For example, if we wanted to write a very
short story with a small amount of variation, we could cre-
ate something like this:
var grammar = {
 story: “#beginning# there was an #adj# #character#”,
 beginning: [“Once upon a time”, “It was a dark and
stormy night, and”, “A long time ago, in a galaxy far,
far away”],
 adj: [“green”, “yellow”, “gigantic”, “evil”],
 character: [“squirrel”, “scientist”, “unicorn”]
}
 Expanding this grammar with a starting point uses Trac-
ery’s functions to select an item from each rule that it en-
counters with the ‘#’ character. In this case, by starting with
the story rule, Tracery would select a beginning then an ad-
jective and a character and output one possible combina-
tion of these elements. This might result in our story being
“Once upon a time there was an evil squirrel.”
 What if we wanted to save a selection from one of the
rules and keep it for the remainder of the generation? We
could change the “story” rule to look like this:
 story: “#beginning# there was an #adj# [hero:#charac-
ter#]. #newSentence#”
 And then add a new rule that calls back our hero charac-
ter in a new sentence, like this:

Figure 11 Game Flow Diagram

10 MATTHEW DELINE: CAMPFIRE TALES – AUGMENTING MODERN ORAL TRADITIONS THROUGH PERFORMANCE AND PROCEDURAL GENERATION

 newSentence: “The #hero# was awesome”
 One possible outcome of this new grammar might be “It
was a dark and stormy night, and there was an gigantic
unicorn. The unicorn was awesome.”
 What this doesn’t do is save the variable between multiple
calls to expand the grammar. Nor does it allow us to incor-
porate new values (such as text entry or defined values)
into the structure for further use. This is where we can use
a combination of JavaScript variables and Tracery’s push-
Rules function to address this problem. To make my se-
cond prototype, I created a very simple short story with
very little variation to test this functionality. In it, a person
(whose name is generated by Tracery) meets a new friend
(defined by the player) and they go to a place (also defined
by the player) and have fun!
 To make this work, I would need to run Tracery’s algo-
rithms each time there was something new added to the
story. To save a permanent addition to the grammar (so
that the generated name is consistent for the remainder of
the program) I wrote the grammar to look like this:
var grammar = {
 names: [“Molly”, “Billy”, “Yosuke”, “Amanda”]
}
var story = tracery.createGrammar(grammar);
var hero = story.flatten(#names#);
story.pushRules(“hero”, [hero]);
 This code takes a grammar structure with one rule com-
posed of a series of names that when “flattened” selects
one of the names in the list and saves it to the variable
“hero.” That variable is then pushed as a new rule to the
grammar called “hero” and containing only one possibility
(the previously saved name), thus making sure that the
value is consistent for all future expansions.
 This same method can be used when saving player input
from a text box to push new rules to the grammar that can
be called later. And because we can define the name our-
selves, we can write rules that anticipate these rules being
pushed later, even if they don’t exist when the program is
first run. For example, I could use the same rule from our
previous example
newSentence: “The #hero# was awesome”
which would result in a sentence like “The Amanda was
awesome” once the algorithm is run using the newSen-
tence rule.
 Where my earlier prototype had values added directly
to the arrays in the grammar themselves, and were saved
for future iterations. Players were essentially adding
words to an ever-increasing list of monster names, and
with each new addition they were decreasing the possibil-
ity that any of these would be recalled in future stories.
While it’s great to have variety, it made it more difficult for
the player to feel like they were having a direct influence
on the story itself. This newer structure felt much more dy-
namic, and served as the basis for the playable and final
versions of the game.
 Lastly, I added a title screen and option to save the story
as an image from the flow diagram I had made previously
to test the player experience from start to finish. Doing so
made me realize that I didn’t necessarily need to give play-
ers the option to share the actual data of their grammars

with each other, nor did I need most of the additional
screens and options from my flow diagram to create a com-
pelling experience.

Figure 12 Example Story Poster

9.5 Player Feedback
Peer feedback received in class and a limited number of re-
sponses to a google feedback form were instrumental in
helping me develop the first fully playable version of the
game. Players indicated that they liked the idea of being
able to print their stories at the end of the game, but
wouldn’t be interested in keeping or sharing it at this time.
Multiple responses asked for changes to the font, animated
fire, and a longer story. One player enjoyed “being able to
choose the characters and destination but nothing really
happened when they got there” (See Appendix A). These
responses gave me three clear goals for developing the next
iteration of the game: to improve the visuals by adjusting
text appearance and adding fire, to create more a substan-
tial narrative with greater variation, and to make sure
those stories are impacted by the input from the player.

MATTHEW DELINE: CAMPFIRE TALES – AUGMENTING MODERN ORAL TRADITIONS THROUGH PERFORMANCE AND PROCEDURAL GENERATION 11

10 PLAYABLE PROTOTYPES
10.1 Developing the First Playable Version
I began development on the first playable version by cre-
ating scene management functions that would allow me to
keep track of content created for longer stories, and allow
the user to progress through either mouse clicks or text en-
try depending on the scene. This would allow me to make
sure that something “happens” as a result of the story pro-
gressing, and ideally as a result of the elements introduced
by player text input. My first test was to create a series of
generated scenes that were a mix of random questions and
unrelated sentences. The questions were framed as some-
one who is sitting with you at a fire and wanting to get to
know you better. Like the original prototype, the answers
weren’t yet used in an interesting way beyond being col-
lected and displayed as a talking point for testing.
 However, because these questions were ones that I con-
sidered keeping for the final version and I wanted to see
how they worked in context, I brought them to a group of
professional developers for a bit of improvisational feed-
back. One of the elements I was trying to gather for the
story was a name, and an example question asked players
to name “a friend that they grew up with.” The response
from the group was overwhelmingly negative, because
when someone is giving something to the story with an ex-
plicit personal attachment (like a friend’s name) they will
expect that the story’s representation matches their own
experiences. For example, if I were to say my mother’s
name to a storyteller, and they incorporated it into the tale
they were weaving, it would be jarring to hear her do
something completely out of character.
 We found that when asking for a name that someone
likes or dislikes, they are able to define something that they
have a personal connection with but not any clearly de-
fined expectations for. They are being asked for the name,
and not the person. Using this frame of reference, I rewrote
my questions for the audience to be less explicitly personal,
and began brainstorming potential narratives in the game.
 My next step before adding complete stories was to im-
prove the audiovisual aspects of the game. After reducing
the text size and changing the font, I found an excellent
open source fire animation in processing by Julien of
Kampeki Factory to use as the basis for the background of
each text-based scene [40]. By converting the code to my
node instance of P5.js and drawing the output to an off-
screen buffer, I could position the fire wherever I wanted
on screen with minimal impact to performance. I reduced
the buffer size while keeping the same aspect ratio to im-
prove speed on mobile devices and further enhance the ha-
ziness of the image to give the appearance of heat.
 To make the effect better, I added campfire audio, and
three additional background tracks that loop to give the
impression that you are in a forest at night [41], [42], [43],
[44]. Because all of these assets are preloaded, I added a
loading animation to replace the default P5.js text that
would appear when the webpage is first opened [45].

10.2 Iterating the Environmental Effects
I continued developing the fire effect by using a larger

plastic storage bin than the one from the first technical pro-
totype, and laser cut an acrylic cover that could be sealed
properly to prevent mist leaking. Adding additional atom-
izers increased the volume of mist being produced so that
it became noticeable at higher altitudes when being blown
by fans. Testing the effect with various configurations of
low and high-speed USB fans showed that the high-speed
fans dissipated the mist too thinly to give the appearance
of fire. The low speed fans worked better, but had to be
placed in very particular angles to create the airflow circu-
lation inside of the bin to push the mist out in a fire-like
pattern.
 Putting a colored light in the mist, and covering the open-
ing with small logs gave the appearance of a smoldering
wood oven, but not that of a roaring campfire. It seemed
like the effect was not going to work the way I intended,
and I nearly gave up when I realized that blowing into the
opening worked much better than the fans I had been us-
ing. Even better, using your breath as if you were starting
the fire felt like a natural interaction, and one that I could
use both as a part of the performance and in the game.

10.3 Combining the Two
Discovering the blowing mechanic led to a major shift in
the design of the experience as a whole. Given that there
was limited development time remaining, I needed to
make a choice, to either keep working on environmental
lighting that is driven by the game or to double down on
this new method of interaction. I decided that it would be
much more interesting to give players a physical fire that
they could play with by trying to keep it alight, than it
would be to generate different colors while playing the
game.
 To do so, I began by testing my assumptions with the
web interface for the game. I added a scaling method to the
fire animation in the game where it would stretch vertically
over time and give the appearance that it was dying out.
And when players breathe into their microphones, which
gives audio input over a specific threshold, the scaling
would reduce and appear as if it was coming back to life.
 Originally, I had the program test for a sustained input
of twenty seconds before returning to the original scale, but
after some players had issues noticing whether or not it
was working, I changed the function so that the scale is ad-
justed whenever microphone input is received over a cer-
tain point. Because the fire is constantly receding, outlier
input like ambient room noise or conversations that inter-
mittently exceed the threshold didn’t result in noticeable
change. The result ends up being an animated reaction to
the player’s breath that feels responsive.

10.4 Philips Hue Prototyping
The next step to developing the physical portion of the in-
stallation was to set up functionality with Philips Hue
lights to react to the breath mechanic introduced in the
most recent version. This could be done by setting the
brightness level of the lights to match a counter that is in-
creased when inputted volume is over a certain level. Com-
pared to the previous smart lights that I had been using,
the Hue lighting system is much better documented and

12 MATTHEW DELINE: CAMPFIRE TALES – AUGMENTING MODERN ORAL TRADITIONS THROUGH PERFORMANCE AND PROCEDURAL GENERATION

has a fully featured npm package for controlling the lights
in a connected node JS application. This would however
work much better within a controlled local environment,
where you can establish the hardware addresses and user
credentials for controlling the lights without having to
build a user interface to do the process for you [46].
 To get the lights to work, I built a separate application to
run a local http server that facilitates communication be-
tween the Hue lights and a second JavaScript that collects
microphone information and determines how the lights
should change. My initial tests with just a counter being
updated on screen indicated that the message and re-
sponse system of standard HTTP functioned much too
slowly to feel natural, so I decided to rewrite the server us-
ing websockets [47]. This was near instantaneous and al-
lowed me to write new functions that would have much
quicker responses.
 The first test used the node-hue-api function to turn on
the light when the counter reached 100. It would then stay
on for a period of time before returning to the off state to
represent the fire either being lit or not lit. Next, I mapped
the brightness of the Hue lightbulb to the value of the
counter, but noticed a pretty significant delay in the update
to the bulb from the bridge.
 To give the player a way to tell whether they had an effect
on the fire quicker, I added two audio tracks. One base
layer fire crackling, and a second roaring bonfire sound
that would increase in volume along with the counter [41],
[48]. Because the audio doesn’t have to communicate fur-
ther with the light system, the feedback is immediate.
Combined they both give the impression that you are light-
ing a flame when blowing on the microphone, with an
added unintentional flickering effect from the delay in
changing brightness values.
 Lastly, I added color to the lighting system by creating a
function that sets the default color during startup, and
changes it rapidly when the brightness is full, giving addi-
tional response for the player and a fun interaction.

10.5 Interpreting Feedback from the First Playable
Version

Player feedback from both new and repeat play testers en-
joyed the response from the addition of the fire animation
and sound. Additionally, the overall scores from the Likert
scale results began to demonstrate an upward positive
trend between feedback rounds. This helped me realize
that while I was moving in the right direction, even if I still
had quite a lot of work to do.
 While observing players try to blow into their micro-
phones, I noticed that many players couldn’t easily find the
location on their laptop where they needed to blow and
some became frustrated trying to set things up. Also, while
I had become very comfortable with the long slow breaths
that I had been using to trigger the game start, some people
tried short powerful breaths that didn’t quite trigger the
opening.
 Nearly every player wanted longer stories, and better
text placement on the screen. Some wanted the ability to
see text from previous sections, and one player suggested
colorizing the final screen text to showcase the generated

words or sentences in different colors. Many players
pointed out that it was difficult to see the continue button
during play, and wanted a way to continue with keyboard
input rather than clicking during each screen.
 Additionally, while players enjoyed the audio, some
found the frequency of high pitched sounds (like crickets)
in the background occurred too often, and wanted a less
distracting soundscape.

11 FINAL PLAYABLE VERSIONS IN PERFORMANCE
11.1 Developing the Final Version
I started addressing these issues immediately during the
development of the final version. First, by decreasing the
amount of microphone input needed to start the fire dur-
ing the opening screen, by adding a function to skip the
scene if microphones weren’t detected, and by adding a
continue button to skip the scene if they weren’t able to get
it to work correctly.
 Next, I began to address the requests for a longer story,
by starting to write a short story that followed some of the
necessary qualities that I determined during my research.
The game begins with a storyteller inviting you to share
their true tale over a fire, and invites you to help them
make a story with them by giving names to protect inno-
cents in the story to give the audience ownership. After an
accidental, and presumed death, the true nature of the sto-
ryteller is revealed, and the player is confronted with the
story’s twist.
 I moved the text so that it was centered beginning at a
quarter of the screen height, and reduced the size of the fire
on the screen to give more focus to the words. I also
changed the soundscape of the game by replacing one of
the background audio tracks with a more sparsely popu-
lated biosphere and implemented a function that allows
me to select specific tracks to play or pause as a group (ra-
ther than the default audio functions in processing).
 I also ran one final round of user testing to gather feed-
back on the changes, and test what the experience was like
when vocalized. One of the shyer testers tried acting the
story out loud, and felt empowered by the experience, as it
gave them the ability to improvise in tandem. This was re-
assuring, as it was my hope that it would encourage others
to try when the game is demonstrated and performed by
others during the Playful Experiences Exhibition.

11.2 Organizing Playful Experiences
One of the core development goals for Campfire Tales has
always been to find a way to use the game in an exhibition
space. This also meant that I needed a way to display it
publicly to demonstrate the performative and hardware
features that I have spent so much time making. Concur-
rent with my work researching and developing the game,
I have acted as student organizer for the Playful Experiences
show that it will be seen in first.
 Throughout the summer, I held weekly planning meet-
ings with classmates, collaborated remotely with those
who couldn’t be present, delegated tasks to each team
member that fit their desired interests, facilitated commu-
nication between task teams, provided clearly defined

MATTHEW DELINE: CAMPFIRE TALES – AUGMENTING MODERN ORAL TRADITIONS THROUGH PERFORMANCE AND PROCEDURAL GENERATION 13

goals and timelines for the process, managed each team
member by keeping track of progress and provided advice
and assistance when needed, helped design a website to
showcase our work online using GitHub Pages, and han-
dled a number of administrative tasks for making sure that
the show runs smoothly [49].
 This gave me an opportunity to support the space that I
used to build the final version of my fire effect. To do so I
combined the previous setup I created with the original
lighting prototype with the functioning setup from the
Philips Hue system. I then attached the power system un-
derneath the underside of a display table, which I experi-
mented with at different heights, and found that a slightly
higher table was safer, and had less chance of being
knocked over without being seen if it was prominently dis-
played.
 I ran the local websocket server and application from a
Raspberry Pi using a USB lapel microphone for input, and
a rounded white Bluetooth speaker that looked like a
marshmallow to output sound within the context of the en-
vironment. I sealed the plastic compartment and covered
it with a black drop cloth, and added a physical campfire
built from fire logs and gathered sticks suspended by hot
glue. I experimented with using reptile terrarium heat
lamps to provide a source of heat during the show, and
plan to keep them operational so long as they are super-
vised (as there is heat being generated directly beneath dry
twigs, I didn’t want to start an actual fire). Lastly, I added a
green shaggy carpet to give the impression of grass, and to
provide a seating area for audiences, and set up a portable
projector on a telescopic stand to display starry skies.

12 FUTURE DEVELOPMENT
12.1 What Worked, What Didn’t, and Where Do We

Go from Here?
At the time of this writing, Campfire Tales has yet to be seen
in public. My plan is to use feedback from our final degree
exhibition to inform the development for future versions,
and to comment on whether or not I succeeded in reaching
my objective with a much wider audience. I’m extraordi-
narily excited to see the response to both the things that I
felt worked well, and those that I would like to improve
further.
 Firstly, I feel like I have been very successful in my learn-
ing objectives for the project. When I started, I had ex-
tremely limited experience with JavaScript, and beyond
that, less than a year’s worth of programming experience
period. Taking on a project and making the decision to not
only use full-stack JavaScript development as a platform,
but to also learn how to use it, integrate it with experi-
mental hardware techniques, and still complete the project
at a postgraduate level was a major achievement for me.
 With that said, if given the choice to revisit the project
again, I wouldn’t use Processing as the main tool for creat-
ing the game. It was an easy to use JavaScript library that
factored into my current knowledge (I had some familiar-
ity in converting some processing sketches to C++ as an
exercise in one of my taught modules) but it didn’t work
well with a project based in nodeJS. A few game focused

development environments that use JavaScript and nodeJS
that would be much better options would be CreateJS,
PixiJS, and Phaser.
 Additionally, while I am excited to have had the oppor-
tunity to push myself to experiment with smart lighting as
an option, I feel that I might have better control over more
complex systems of local effects (including lighting or me-
chanical) using a system of wirelessly connected microcon-
trollers. I would love to see how a version of this experi-
ence might be iterated upon further by focusing on the
strengths of the experience as an installation. On the flip-
side, laying the groundwork for the smart lights was in the
hope of potentially exploring a version of this game in the
future that runs on the Amazon Alexa platform, entirely
using microphone input, and could interact with the per-
sonal setups of the players at home.
 And while I am happy with the current structure of the
story that has been created, there is a portion of me that
also feels that by choosing to focus specifically on campfire
stories, I haven’t yet reached the type of limitless imagina-
tion inspired by the alphabet stories I told when I was
younger. I would love to create more variety within the sto-
ries themselves, to further integrate player choice, and to
improve people’s ability to share their stories beyond a
printable image.
 I could do this by adding an online database service, like
Google’s Firebase, to the game as a way to collect the sto-
ries created by people, and to use the Twitter Bot that I cre-
ated early on in the development process as a method of
sharing them. Over time, as the stories become more com-
plex, there could be a genuine record of how they change,
and would be an excellent way to illustrate the ritualistic
repetition through play that evokes the oral traditions that
inspired this project.

12.2 Final Thoughts
In conclusion, I am extremely happy with the current result
of Campfire Tales as the start of a greater ambition in com-
bining generative storytelling and immersive theatre. It
manages to provide the illusion of improvisational interac-
tion with a storyteller, and demonstrates how stories can
be changed through repeated tellings with a written rec-
ord. Mostly, I feel as though it has contributed in its own
small way by demonstrating a new method of using gen-
erative techniques in combination with real world spaces,
and might be used to help people learn to embrace their
own innate storyteller through improvisational techniques
that can be taught through software of this type.

14 MATTHEW DELINE: CAMPFIRE TALES – AUGMENTING MODERN ORAL TRADITIONS THROUGH PERFORMANCE AND PROCEDURAL GENERATION

APPENDIX A: USER TESTING RESPONSES
Prototype Feedback

MATTHEW DELINE: CAMPFIRE TALES – AUGMENTING MODERN ORAL TRADITIONS THROUGH PERFORMANCE AND PROCEDURAL GENERATION 15

Playable Version Feedback

16 MATTHEW DELINE: CAMPFIRE TALES – AUGMENTING MODERN ORAL TRADITIONS THROUGH PERFORMANCE AND PROCEDURAL GENERATION

ACKNOWLEDGMENT
I wish to thank Phoenix Perry for lending the use of her
Philips Hue kit during development, Hugh S. Kennedy for
JavaScript guidance, and the rest of my MA cohort for test-
ing Campfire Tales and contributing to the success of Playful
Experiences.

REFERENCES

[1] J. Vansina, Oral Tradition as History, Madison, WI:

University of Wisconsin Press, 1985, pp. 3,27.
[2] H. Hagebölling, "Elements of a History of Interactive

Dramaturgy: Cultural Fingerprints in the Digital
Net," in Interactive Dramaturgies: New Approaches in
Multimedia Content and Design, Berlin ; New York,
Springer, 2004, pp. 9-16.

[3] P. W. Wiessner, "Embers of society: Firelight talk

among the Ju/’hoansi Bushmen," Proceedings of the
National Academy of Sciences, vol. 111, no. 39, p. 14027,
2014.

[4] R. Wilson, Wild and Weird Campfire Stories, Moab:
Yellow Cat Publishing, 2012.

[5] S. Friedman, "How to Tell a Good Campfire Story,"
27 October 2014. [Online]. Available:
https://www.backpacker.com/survival/how-to-
tell-a-good-campfire-story. [Accessed 1 August
2018].

[6] "Campfire Stories - Ultimate Camp Resource,"
[Online]. Available:
http://www.ultimatecampresource.com/site/cam
p-activities/campfire-stories.html. [Accessed 8
August 2018].

[7] Dim Bulb Games, "Where the Water Tastes Like
Wine," Good Shepherd Entertainment, 2018.

[8] Gamewright, Rory's Story Cubes, 2010.
[9] N. a. T. J. a. N. M. J. Shaker, Procedural Content

Generation in Games: A Textbook and an Overview
of Current Research, Springer, 2016.

[10] K. Compton, "So you want to build a generator...," 22
February 2016. [Online]. Available:
http://galaxykate0.tumblr.com/post/13977496587
1/so-you-want-to-build-a-generator. [Accessed 27
July 2018].

[11] Niantic, "Pokemon Go," Niantic, 2016.
[12] Hello Games, "No Man's Sky," Hello Games, 2016.
[13] K. Hollings, "What is the Cut-Up Method?," 25 June

2015. [Online]. Available:
https://www.bbc.com/news/magazine-33254672.
[Accessed 17 September 2018].

[14] Blizzard Entertainment, "Starcraft," Blizzard
Entertainment, 1998.

[15] J. H. Conway, "Game of Life," 1970.
[16] T. Adams and Z. Adams, "Dwarf Fortress," Bay 12

Games, 2006.
[17] M. Cook, "Alien Languages: How We Talk About

Procedural Generation," 18 August 2016. [Online].
Available:
http://www.gamesbyangelina.org/2016/08/proce
durallanguage/. [Accessed 27 July 2018].

[18] C. Martens and R. Cardona-Rivera, "Procedural
Narrative Generation," 2017. [Online]. Available:
https://www.gdcvault.com/play/1024143/Proced
ural-Narrative. [Accessed 27 July 2018].

[19] Nerial, "Reigns: Her Majesty," Devolver Digital,
2017.

[20] F. Ramallo, "PANORAMICAL," Finji, 2015.
[21] Somerset House, Now Play This!, London, 2018.
[22] Hex-Ray Studios, "Pixel Fireplace," Hex-Ray

Studios, 2015.
[23] A. Judge, "Tweet," 2017. [Online]. Available:

https://twitter.com/ahjudge/status/940704412930
117633. [Accessed 8 August 2018].

MATTHEW DELINE: CAMPFIRE TALES – AUGMENTING MODERN ORAL TRADITIONS THROUGH PERFORMANCE AND PROCEDURAL GENERATION 17

[24] T. Martens, "Pixel Fireplace," [Online]. Available:
https://hammertail.itch.io/pixel-fireplace.
[Accessed 8 August 2018].

[25] W. Benjamin, "The Work of Art in the Age of
Mechanical Reproduction," 1936. [Online].
Available:
https://www.marxists.org/reference/subject/phil
osophy/works/ge/benjamin.htm. [Accessed 7
August 2018].

[26] B. Dias, "Improv," [Online]. Available:
https://github.com/sequitur/improv. [Accessed 1
July 2018].

[27] B. Dias, "Voyageur," Fundbetter, 2017.
[28] B. Dias, "Generating Text With Improv," 2017.

[Online]. Available:
http://www.procjam.com/tutorials/en/improv/.
[Accessed 19 June 2018].

[29] N. Fleck, "Rant," 2017. [Online]. Available:
https://berkin.me/rant/. [Accessed 25 June 2018].

[30] K. Compton, "Tracery: generate text, graphics and
mroe," [Online]. Available: http://tracery.io/.
[Accessed 25 June 2018].

[31] D. C. Howe, "RiTa a software toolkit for
computational literature," [Online]. Available:
http://rednoise.org/rita/. [Accessed 25 June 2018].

[32] D. Shiffman, "15: Twitter Bot Tutorial - Node.js and
Processing," 19 September 2017. [Online]. Available:
https://www.youtube.com/playlist?list=PLRqwX-
V7Uu6atTSxoRiVnSuOn6JHnq2yV. [Accessed July
2018].

[33] M. Deline, "Campfire Tales," 2018. [Online].
Available: https://twitter.com/CampfireTale.
[Accessed 2018].

[34] G. Buckenham, "Cheap Bots, Done Quick!," [Online].
Available: https://cheapbotsdonequick.com.
[Accessed July 2018].

[35] M. DesLauriers and yoshuawuyts, "budō," June
2018. [Online]. Available:
https://www.npmjs.com/package/budo.
[Accessed June 2018].

[36] G. Buckenham, "tracery-grammar," 2016. [Online].
Available:
https://www.npmjs.com/package/tracery-
grammar. [Accessed June 2018].

[37] oksmith, "Bonfire," 24 April 2018. [Online].
Available:
https://openclipart.org/detail/300895/bonfire.
[Accessed July 2018].

[38] codetheweb, "TuyAPI," [Online]. Available:
https://github.com/codetheweb/tuyapi.
[Accessed July 2018].

[39] The Daniels Wood Land Show, "Insane Fake Fire
Special Effect!," 1 March 2016. [Online]. Available:
https://www.youtube.com/watch?v=htBYgRNvk
mk. [Accessed July 2018].

[40] Kampeki Factory, "Set Your Browser On Fire With

P5.Js," 7 March 2018. [Online]. Available:
https://kampeki-
factory.blogspot.com/2018/03/set-your-browser-
on-fire-with-p5js.html. [Accessed August 2018].

[41] aerror, "campfire.wav," 25 July 2016. [Online].
Available:
https://freesound.org/people/aerror/sounds/350
757/. [Accessed August 2018].

[42] felix.blume, "Forest at dawn with birds, crickets and
insects in the Sian Ka'an Biosphere Reserve," 9
November 2015. [Online]. Available:
https://freesound.org/people/felix.blume/sounds
/328296/. [Accessed August 2018].

[43] felix.blume, "Forest at night, crickets, cicadas and
insects in the Sian Ka'an Biosphere Reserve," 9
November 2015. [Online]. Available:
https://freesound.org/people/felix.blume/sounds
/328293/. [Accessed August 2018].

[44] A. Fletcher, Composer, Magical Forest. [Sound
Recording]. 2018.

[45] Gifer, "Transparent Loading Bar Gif," [Online].
Available: https://gifer.com/en/YCZH. [Accessed
August 2018].

[46] P. Murray, "node-hue-api Node.js Library for
interacting with the Philips Hue Bridge and Lights,"
29 August 2018. [Online]. Available:
https://github.com/peter-murray/node-hue-api.
[Accessed 29 August 2018].

[47] socket.io, "socket.io," [Online]. Available:
https://socket.io. [Accessed August 2018].

[48] homejrande, "fire wood bonfire low eq.aif," 28
March 2006. [Online]. Available:
https://freesound.org/people/homejrande/sound
s/17375/. [Accessed August 2018].

[49] Playful Experiences, "Playful Experiences," August
2018. [Online]. Available:
http://playfulexperiences.com. [Accessed August
2018].

[50] H. Hagebölling, "Aspects of Interactive
Dramaturgies: Thematic Frame and Authors'
Contributions," in Interactive Dramaturgies: New
Approaches in Multimedia Content and Design, H.
Hagebölling, Ed., Berlin; New York, Springer, 2004,
p. 260.

Matthew Deline is currently completing his MA Independent Games
and Playable Experience Design with Goldsmiths, University of Lon-
don. He has a BA in English and Comparative Literature, and was the
2009 Outstanding Graduate in the subject at San Diego State Univer-
sity. Recently, he has worked as a contributing artist for The Long
Run, a commissioned work by the British Medical Association for the
70th anniversary of the NHS, runs a travel blog under the name The
Radical Dreamer, and formerly worked as a senior technical support
agent for the Worldwide Operations group at Apple Computer, Inc. He
looks forward to using his expertise to make new types of games and
interactive experiences.

